

Team 18

Midyear Design Review

Department of Electrical and Computer Engineering

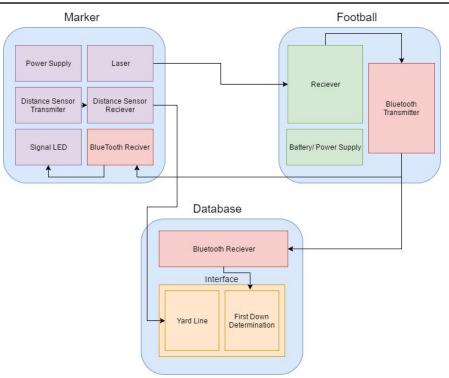
Meet the Team

Advisor: **Professor Tessier**

Josh Setow EE

Tim Freitas EE

EE



Josh Gallant EE

Department of Electrical and Computer Engineering

- Current marker system is prone to human error, slows down gameplay, and is not very accurate.
- LASERef is a quicker and more accurate way of determining whether or not the ball crossed the first down marker

Previous Solution: Block Diagram

Department of Electrical and Computer Engineering

Instrumenting the ball is not feasible

- Trying to dissect the football and put it back together was too messy
- Components wouldn't fit properly inside of the ball and ran the risk of being damaged
- Integrity of the football was greatly compromised

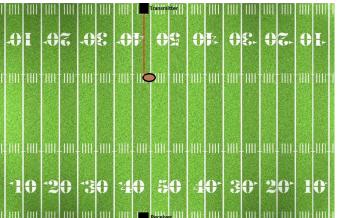
- Football must be placed exactly in the right position in order for reflections to come back
 A lot of margin for error
- Reflections come back scattered and have reduced light intensity
 - Nearly impossible for a receiver to pick up
- Possibility of scattering laser can end up in other places besides the receiver
 - Safety concerns

UMassAmherst Surveying Equipment

- Cumbersome process
 - Requires many tools that would take too long to measure
- Too expensive
 - Surveying equipment generally between \$5k \$25k

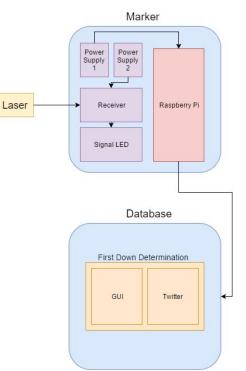
UMassAmherst Total Station

Distance Measurement


- Emits infrared light at varying frequencies and measures the time in which it takes for the infrared light to reflect off the object (usually a reflective prism) and return to the total station
- Coordinate Measurement
 - With the use of triangulation, trigonometry and absolute line of sight, exact coordinates of a reflective prism can be determined with reference to the total station
- Infrared Light
 - Using infrared light would increase the time it takes to align the laser and the receiver due to the fact that it is not visible to the human eye - Operator would be aligning it based on feel not vision

UMassAmherst Our New Method

Laser Break Beam Detector


 Ball is detected when laser between the transmitter and receiver is broken

			Tran	ismitter				
-OI	.07	30-	-0F	02 0		£. 0	3. 8	H-
				>		† IIII† IIII		1111
	11111	_ 1111 _ 1111 _		11.1111_1111	100 100	1111-1111	1001-00	11111-1
10	20	130	40	50 4	0 - 3	0 2	0 -	0
			Rece	eiver				

Department of Electrical and Computer Engineering

Redesigned Solution: Block Diagram

Department of Electrical and Computer Engineering

UMassAmherst MDR Deliverables

- Demonstration that marker can detect the nose of the football up to 25 yards
- Distance sensor can detect how far down the field the marker is placed
- Bluetooth modules in football and marker to relay information to control software system

- Demonstration that the photodiode can detect the laser from 50 yards
- A Raspberry Pi in the marker that can relay first down information to Twitter

System Requirements

- Detect the laser at long distances
 - Photodiode needs to sense the laser from across the field (50 yards)
- Fast & Accurate
 - Needs to determine a first down accurately and quickly
- Information relay
 - First down determination needs to be relayed to the referees, announcers, and viewers

Demo

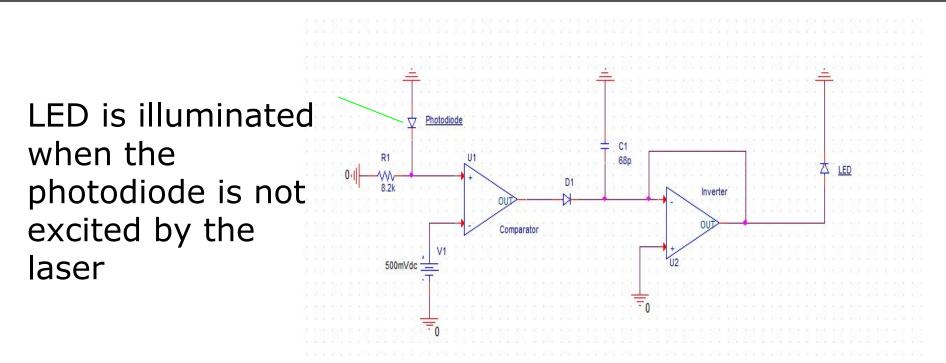
Football Detection via Laser and Photodiode

Information uploaded to Twitter

UMassAmherst Alignment

Time to Laser and Receiver Alignment in Seconds

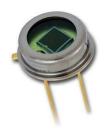
12.93	5.21
3.22	3.33
4.12	3.10
3.20	4.47
1.67	3.44

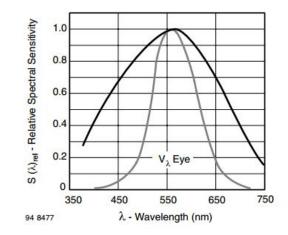

Average Time: 4.225 seconds

Department of Electrical and Computer Engineering

UMassAmherst Distance

- Receiver able to receive transmitted signal from up to 90 yards away
- In a football game the maximum distance necessary is 55 yards


The Receiver Circuit



Department of Electrical and Computer Engineering

The Photodiode Receiver

- Vishay BPW21R
 - Peak sensitivity: 565 nm
 - Operating temps: -55C +125C

The Photodiode Receiver

Mirrored Box Cone

Department of Electrical and Computer Engineering

UMassAmherst The Photodiode Receiver

- Prevents sunlight and stadium lights from exciting photodiode
- Eliminates possibility of fans shining a laser into the cone only light perpendicular to receiver could be received

Receiving Box Design

- Dimensions:
 - 6.5" x 6.5" x 14.5"
- Top of Box
 - Signal LED
 - First Down Switch
 - Temporary Battery
- Easy mobility

Future Box Improvements

- Weatherproofing
 - Snow, rain, etc.
- Padding
 - Player safety
 - Protection of box
- Lighter box frame
- Better/more durable light shield

UMassAmherst GUI

- GUI (Graphical User Interface) was original software system
- Eduroam and UMASS wifi not friendly with accessing information via IP address
- GUI Demo

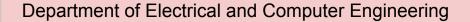
Information Relay from Pi to Twitter

- Twitter is a better solution
- With Twitter anyone following the game can access the information

- Raspberry Pi receives input (on or off) from switch into GPIO pin
 - Sends either "Disconnected" + Time or "Connected" + Time
- A Python script on the Pi makes use of Twython
 - Twython is an API that allows for user to update Twitter via Python code using Twitter Apps

Department of Electrical and Computer Engineering

UMassAmherst CDR Deliverables


- More information to be relayed to Twitter
 - Current down, game time, etc.
- Design the other marker holding the laser
 - Stabilization and levelling
 - Laser stays still
- Alignment of the markers on the field
 - Laser and photodiode need to be aligned
 - Less time spent manual aligning it

Current Stabilization And Alignment

- Laser can be calibrated to change height if field is not perfectly level
- Once calibrated, laser alignment takes about 4-5 seconds to align

Future Ideas For Alignment

- Laser will be built on the first down marking mat
 - Won't have any inconsistencies in vertical direction
- Increased receiver module
 - A longer receiver module will be easier to hit with a point laser
- Diffraction laser plane method
 - Plane laser beam can hit the single receiver module more accurately

UMassAmherst MDR Deliverables

- Receiver can detect the laser from 50 yards
- A Raspberry Pi in the marker that can relay first down information to Twitter

UMassAmherst Gantt Chart

					Feb				Mar				Apr				
Task Name	Jan 1	Jan 8	Jan 15	Jan 22	Jan 29	Feb 5	Feb 12	Feb 19	Feb 26	Mar 5	Mar 12	Mar 19	Mar 26	Apr 2	Apr 9	Apr 16	Apr 23
Second Marker						14	14		Second Ma	arker						j –	
Laser Attachment & Switching			Laser Attachment & S		ent & Switch	t & Switching											
Stablilization				Stablilization													
Alignment									Alignment								
Improve Receiver Box							1						114		Improve Re	ceiver Box	
Optimized Spacing													Optin	nized Spacir	ng		
Protective Padding				j.										Protective	Padding		
Aesthetics															Aesthetics		
Software					1/2 20	1	1/4	11	14 10	14	14	12	14		Software		
Relay Information to Website			Relay Information to Website					site									
Additional Information (Yard line, Down info, etc.)	2												Addi	tional Inform	ation (Yard I	ine, Down i	nfo, etc.)
Aesthetics															Aesthetics		
Final Presentation Demo Setup																	Final Prese
Miniature Setup														1	1		Miniature S

Team Contributions

- Josh G
 - Developed the GUI and Raspberry Pi Twitter script
- Josh S
 - Designed the blueprints for the box and programmed the website
- Sam
 - Researched and tested best ways to reflect laser and programmed the website
- Tim
 - Constructed the box and the photodiode circuit

UMassAmherst Thank You

Questions

Department of Electrical and Computer Engineering